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Abstract
Prostate cancer is a leading cause of morbidity and mortality for adult males in the US. The diagnosis of prostate carcinoma
is usually made on prostate core needle biopsies obtained through a transrectal approach. These biopsies may account for a
significant portion of the pathologists’ workload, yet variability in the experience and expertise, as well as fatigue of the
pathologist may adversely affect the reliability of cancer detection. Machine-learning algorithms are increasingly being
developed as tools to aid and improve diagnostic accuracy in anatomic pathology. The Paige Prostate AI-based digital
diagnostic is one such tool trained on the digital slide archive of New York’s Memorial Sloan Kettering Cancer Center
(MSKCC) that categorizes a prostate biopsy whole-slide image as either “Suspicious” or “Not Suspicious” for prostatic
adenocarcinoma. To evaluate the performance of this program on prostate biopsies secured, processed, and independently
diagnosed at an unrelated institution, we used Paige Prostate to review 1876 prostate core biopsy whole-slide images (WSIs)
from our practice at Yale Medicine. Paige Prostate categorizations were compared to the pathology diagnosis originally
rendered on the glass slides for each core biopsy. Discrepancies between the rendered diagnosis and categorization by Paige
Prostate were each manually reviewed by pathologists with specialized genitourinary pathology expertise. Paige Prostate
showed a sensitivity of 97.7% and positive predictive value of 97.9%, and a specificity of 99.3% and negative predictive
value of 99.2% in identifying core biopsies with cancer in a data set derived from an independent institution. Areas for
improvement were identified in Paige Prostate’s handling of poor quality scans. Overall, these results demonstrate the
feasibility of porting a machine-learning algorithm to an institution remote from its training set, and highlight the potential of
such algorithms as a powerful workflow tool for the evaluation of prostate core biopsies in surgical pathology practices.

Introduction

Prostate cancer is a leading cause of cancer-related morbidity
and mortality in the US. It is estimated that 191,930 new cases

of prostate cancer will be diagnosed in the US in 2020
accounting for 10.6% of all new cancer cases. Prostate cancer
is also predicted to cause 33,330 deaths in 2020 accounting
for 5.5% of all cancer deaths [1]. The diagnosis of prostate
cancer is made on tissue biopsies typically triggered by ele-
vations of prostate-specific antigen and/or an abnormal digital
rectal exam. Traditionally prostate core biopsies have been
obtained by systematic biopsy of the peripheral zone of the
prostate. In recent years, multiparametric magnetic resonance
imaging of the pelvis has increasingly been used to detect
prostatic lesions and to obtain targeted core biopsies of the
lesions in addition to the traditional systematic cores [2]. As a
result, prostate core biopsies are often a significant portion of
the anatomic pathologists’ work load in many surgical
pathology settings. The accurate detection, quantitation and
grading of prostate cancer is critically important in the evol-
ving landscape of prostate cancer treatment [3–6]. While
blinded re-review of slides can increase cancer detection and
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accuracy, time and workflow considerations impede routine
adoption of second-reads in surgical pathology practices
[7–9]. Computer-aided diagnosis with the potential to
improve the accuracy of prostate core biopsy diagnoses while
simultaneously decreasing turnaround times and relieving
pathologist workload would be enormously useful in surgical
pathology practice.

The evolution and adoption of digital pathology technol-
ogies is predicted to improve diagnostic accuracy in the
anatomic pathology realm [10]. Machine-learning algorithms
applied on digitized images have demonstrated accurate per-
formance in identifying disease features and phenotypes
[11, 12]. Ideally, in order to have diagnostic utility, machine-
learning algorithms in anatomic pathology should demon-
strate comparable performance across whole-slide imaging
(WSI) datasets regardless of the origin of the images. Paige
Prostate is a machine-learning algorithm trained on the digital
slide archive of Memorial Sloan Kettering Cancer Center
(MSKCC) in New York that takes a whole-slide image as
input and categorizes the image as either “suspicious” for
prostatic adenocarcinoma if the algorithm detects adeno-
carcinoma or glandular atypia (including focal glandular
atypia (FGA), high-grade prostatic intraepithelial neoplasia
with adjacent atypical glands (PIN-ATYP) or atypical small
acinar proliferation (ASAP)); or “not suspicious” for prostatic
adenocarcinoma if none of these lesions are detected [13]. In
this study, we evaluated the performance of Paige Prostate on
a prostate core biopsy WSI data set from Yale Medicine that
the algorithm had not previously seen. The study was
designed to investigate two potential use case scenarios for
Paige Prostate: (1) its utility as a prescreening tool to identify
negative cores not requiring manual review by a pathologist
and (2) its utility as a second read tool to identify cancer foci
not identified by the pathologist. Ideally, in the former use
case, all cores categorized as “not suspicious” by the algo-
rithm would be free of tumor, decreasing the number of cores
needing pathologist review and, therefore, reducing turn-
around time and increasing pathologist productivity. In the
latter use case, the algorithm would be used to detect missed
foci of cancer, increasing accuracy of reads and thus
impacting assessment of tumor volume and location within
the prostate, which are important metrics used in deciding
between active surveillance versus curative treatments, or for
targeting precision radiation therapy for clinical management.

Materials and methods

Sample selection and scanning

A total of 1876 prostate core biopsies from 118 consecutive
patients procured at Yale Medicine and processed at Yale
Pathology from June to July 2019 were included in the

analysis. Because of the institutional use of MRI/Ultrasound
fusion for guidance of targeted prostate biopsies at Yale,
there were often in excess of 20 separately identified
prostate core biopsies from each patient. Per institutional
policy, for routine diagnostic purposes five histologic levels
were prepared from each core biopsy. Levels 1, 3 and 5
were stained with hematoxylin and eosin and levels 2 and 4
were left unstained for possible immunohistochemical
staining. The clinically reported discrete diagnosis for each
core biopsy rendered by a board certified pathologist after
review of all H&E stained levels with additional immuno-
histochemical (IHC) workup as needed was treated as the
ground truth diagnosis. Level 3 of each core biopsy was
scanned using a Leica AT-2 WSI scanner® (Leica Biosys-
tems, IL) at a 20× magnification. Scans which the scanner
software identified as having failed were repeated; no other
quality assurance step was performed on the scans. Scanned
images were stripped of identifiers and provided to Paige
for processing with the Paige Prostate algorithm. The
algorithm was applied without any site-specific adjustments
or tuning. The version of software used in this study differs
from the originally described version [13] in efficiency and
design of the underlying software; the categorization algo-
rithm produces identical results to the original version.

Analysis

The algorithm categorized each core biopsy as “suspicious”
if the algorithm detected adenocarcinoma or glandular aty-
pia (including FGA, PIN-ATYP and ASAP) and as “not
suspicious” if none of those lesions were detected. Of note,
the algorithm treats high-grade prostatic intraepithelial
neoplasia (HG-PIN) as not suspicious. In addition, Paige
Prostate flags slides as being out of distribution (OOD) if
the thumbnail image (224 × 224 pixels) is significantly
different from the distribution of core needle biopsy slides
used to develop the algorithm as a way of indicating to
pathologists that the incoming data are significantly differ-
ent than it expects. Common causes of OOD flags include
no prostate tissue present, cracks or bubbles, and marker
strokes. Core biopsies for which the algorithm’s categor-
ization differed from the rendered diagnosis were treated as
tentatively discrepant. Digital images and/or glass slides of
discrepant biopsies were reviewed to confirm the presence
of diagnostic lesional tissue on the scanned level. Tenta-
tively discrepant biopsy images were intermixed with thirty
randomly selected core biopsy images and the whole-slide
images were manually reviewed independently by two
genitourinary pathologists blinded to the algorithm cate-
gorization and the previously rendered final diagnosis. The
thirty intermixed cases included 22 core biopsies with a
final diagnosis of benign prostatic tissue, 6 cores with
prostatic adenocarcinoma, one with FGA and one with
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HG-PIN. Any discrepancy in manual reads was resolved by
consensus except for cores where either of the two pathol-
ogists diagnosed glandular atypia. Core biopsies categor-
ized as “not suspicious” by the algorithm but with a final
rendered diagnosis of glandular atypia were classified as
non-discrepant if both reviewers rendered a benign diag-
nosis and discrepant if either of the two reviewers diag-
nosed atypia. Core biopsies categorized as “suspicious” by
the algorithm were classified as non-discrepant if either of
the two reviewers diagnosed atypia and discrepant if neither
of the two reviewers diagnosed atypia. For core biopsies
that remained discrepant after blinded review, images were
manually rereviewed by the same pathologists with the
algorithm highlighting the focus of interest. The analytic
pipeline is summarized as a flow diagram in Fig. 1.

Results

Of the 118 patients represented by the 1876 core biopsies in
the study, 86 patients were diagnosed with prostatic adeno-
carcinoma in at least one core (range of 1–15 positive cores
per patient) while 32 patients were diagnosed not having
cancer (see Table 1 for brief clinical characteristics). Paige
Prostate’s analysis categorized at least one core as suspicious
in 84 of the 86 patients with adenocarcinoma while no cores
were categorized as suspicious in 26 of the 32 patients
without carcinoma or glandular atypia. Of the 1876 core
biopsies, 489 cores had a discrete diagnosis of adenocarci-
noma, PIN-ATYP, ASAP or FGA; the rest of the cores were
diagnosed as benign, high-grade PIN, or as having no pro-
static glandular tissue present (see Table 2). There was an
apparent discrepancy between the final diagnosis and Paige
Prostate categorization in 80 cores. Of these, 46 cores were
further analyzed as “not suspicious discrepant cores” (Paige
categorization “not suspicious” but final diagnosis was ade-
nocarcinoma, PIN-ATYP, ASAP or FGA) and 34 were fur-
ther analyzed “suspicious discrepant cores” (Paige
categorization “suspicious” but final diagnoses was benign,
HG-PIN or no prostatic glandular tissue present).

Not suspicious discrepant cores

The 46 not-suspicious discrepant cores yield an apparent
negative predictive value of 96.7%/specificity of 97.6% for
Paige Prostate. Further analysis revealed that for 16 of these
cores the scanned images were not interpretable manually
(Table 3): 14 were out of focus, one had separation of cov-
erslip and in one case the tissue was folded on itself. All
sixteen cores had a final rendered diagnosis of adenocarci-
noma. Seven of the 16 scanned images were flagged as being
OOD by the algorithm. In 19 other discrepant cores, diag-
nostic lesional tissue was not present in the scanned image.

Removing the 16 bad scans from the analysis and treating the
19 cores without diagnostic tissue in the scanned image as
being concordant leaves 11 truly discrepant cores (5 cores
with adenocarcinoma and 6 cores with glandular atypia)
yielding a revised negative predictive value of 99.2%.

Since the discrepant carcinoma biopsies constitute the
most clinically significant misses, these were investigated in
greater detail and included the following:

1. Core biopsy with a 1 mm focus of foamy gland
carcinoma confirmed by IHC (Fig. 2A, B). Both
blinded reviewers identified this focus. This core was
the only core from a 12-core case with carcinoma.
Two other cores of this case were diagnosed with HG-
PIN and PIN-ATYP; the latter of which was
categorized as suspicious by Paige Prostate.

2. Core biopsy with a 0.5 mm focus of carcinoma
showing perineural invasion (Fig. 2C). Both manual
reviewers identified this focus. Eight of the 21
remaining cores of this case were diagnosed with
carcinoma, all of which were categorized as suspi-
cious by Paige Prostate.

3. Core biopsy with 1 mm focus of carcinoma that was
also missed by both manual reviewers and better seen
on deeper levels. Nine of the 16 remaining cores of
this case were diagnosed with carcinoma, all of which
were categorized as suspicious by Paige Prostate.

4. Core biopsy with 0.5 mm of foamy gland carcinoma
confirmed by IHC that was also missed by both
manual reviewers. Four of the 21 remaining cores of
this case were diagnosed with carcinoma, all of which
were categorized as suspicious by Paige Prostate.

5. Core biopsy with atypical glands diagnosed as
adenocarcinoma with hormone-deprivation therapy
effect, spanning 2 mm on deeper levels (Fig. 2D).
Both manual reviewers identified atypical glands and
indicated that they would request levels. Thirteen of
the 26 remaining cores of this case were diagnosed
with carcinoma, 12 of which were categorized as
suspicious by Paige Prostate and one had a scan
failure due to a separated coverslip.

On manual review of the images of six core biopsies with
glandular atypia, both reviewers diagnosed atypical glands
in five cores and one pathologist diagnosed atypical glands
in the remaining core. In five of the six cores, one or both
reviewers felt that an IHC workup was further needed for
accurate classification.

Suspicious discrepant cores

Thirty four (34) of the 477 core biopsies categorized as
“suspicious” by Paige Prostate had a final diagnosis of
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Fig. 1 Study design. Flow diagram summarizing the analytic pipeline of the study.
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benign prostatic tissue, HG-PIN, no prostatic glandular
tissue identified or granulomatous prostatitis, yielding an
apparent positive predictive value of 92.9%/sensitivity of
90.6% (Table 2). In 32 of these images categorized as
suspicious, the largest focus identified by the algorithm was

0.6 mm, and the vast majority (23/32) had foci smaller than
0.2 mm. On manual review, at least one of the reviewers
diagnosed atypical glands in 16 cases (Table 4). Two cores
had no prostatic glandular tissue present and had been
flagged as OOD by the algorithm. The remaining cores
were all benign with one core showing granulomatous
prostatitis. Treating these 16 cores where at least one of the
manual reviewers felt that glandular atypia was present as
non-discrepant and removing the two OOD scans
from the analysis yields a revised PPV of 96.6%. Paige
Prostate has a feature that highlights areas of concern in
suspicious cases. When the manual reviewers re-reviewed
suspicious discrepant cores with Paige Prostate annotation,
6 additional cores were classified as atypical by at least
one of the two reviewers. If these cores are re-classified as
non-discrepant, the total ‘suspicious discrepant cores’
become 10; thus, the positive predictive value increases
to 97.9%.

Manual reads of random intermixed cases

To prevent bias, 30 randomly selected core biopsy images
were intermixed with discrepant cores for manual reviewers
that included 22 benign cores, one with FGA, six with
adenocarcinoma and one with HG-PIN. The manual reads
were concordant with the final rendered diagnosis in all
cores except for one core with adenocarcinoma where both
reviewers diagnosed atypia needing IHC, one core with
atypia called benign by both reviewers and one core with a
benign diagnosis for which one reviewer diagnosed atypia.
The core with HG-PIN was out-of-focus and manually
uninterpretable.

At the end of our analysis to determine truly discordant
cores and after removing bad scans or scans without
lesional tissue, we find that 465 out of 475 “suspicious for
cancer” and 1371 out of 1382 “not suspicious for cancer”
categorizations by Paige Prostate were concordant. Based
on these values Paige Prostate showed positive predictive
value of 97.9%, a negative predictive value of 99.2%,
sensitivity of 97.7% and specificity of 99.3% in our data set.
Identifying the truly discrepant cores based on our analysis
yields an F1 score of 0.98.

Discussion

Paige Prostate is a machine-learning algorithm designed to
categorize a prostate core biopsy whole-slide image as
either “suspicious” or “not suspicious” for prostatic ade-
nocarcinoma. This study was designed to evaluate Paige
Prostate on a set of independent scanned slides from Yale
Medicine, an academic medical center with a high volume
of prostate biopsies where most biopsies are reviewed by a

Table 1 Brief summary of clinical characteristics of patient cohort.

Patient characteristics

Age range (years) (N)

45–50 2

51–60 28

61–70 45

71–80 38

81–90 5

PSA range 0.5–305.5 ng/ml

Highest Gleason Grade (N)

Gleason Grade 3+ 3= 6/10 (Grade Group 1) 40

Gleason Grade 3+ 4= 7/10 (Grade Group 2) 21

Gleason Grade 4+ 3= 7/10 (Grade Group 3) 7

Gleason Grade 4+ 4= 8/10 (Grade Group 4) 9

Gleason Grade 4+ 5= 9/10 (Grade Group 5) 8

Gleason Grade 5+ 4= 9/10 (Grade Group 5) 1

No cancer 32

Prior documented history of adenocarcinoma (on
surveillance or treated)

43

Table 2 Summary of the clinically rendered diagnoses of 1 876 core
biopsies and their corresponding categorization by Paige Prostate.

Final Diagnosis Number
of cores

Paige Prostate
Categorization

Suspicious Not
suspicious

Carcinoma 438 411 27

Atypia (FGA /ASAP/
PIN-ATYP)

51 32 19

HG-PIN 18 6 12

Benign prostatic tissue 1229 26 1203

No prostatic glandular
tissue present

140 2 138

Table 3 Results of manual review of “not suspicious” discrepant cores
(n= 46). Columns on the right denote the clinically rendered final
diagnosis for each core.

Manual review category Final diagnosis group Total

Atypical Adenocarcinoma

Agree (Diagnostic tissue not
present on scanned level)

13 6 19

Scan Failure 0 16 16

Miss-ASAP 6 0 6

Miss-carcinoma 0 5 5
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resident/fellow and a subspecialized genitourinary (GU)
pathologist, and borderline/tough calls are reviewed in
routine consensus conference. In this specific practice set-
ting, the goal of this study was to determine the algorithm’s
utility as a prescreening tool to identify cases without car-
cinoma and as a second read tool to detect manually
missed foci of carcinoma without any site-specific calibra-
tion of the algorithm. The first use case is a potential pro-
ductivity tool to allow the pathologist to focus only on cases
suspicious for malignancy, allowing greater sign out
volume per day. For this scenario, a high negative

predictive value is desirable. The second use case is a
potential patient safety tool by increasing the accuracy of
rendered diagnosis. In this use case, a high positive pre-
dictive value is desirable.

In this study if Paige Prostate was used as prescreening
tool such that only those cores categorized as suspicious or
as out of distribution were manually reviewed, a pathologist
would have to review only 589 of 1876 core biopsies
(31.4%), substantially increasing productivity. In the
absence of any additional quality review of scanned images,
this would also mean that 14 cores with adenocarcinoma
(5 cores with in-focus images and another 9 cores with scan
issue not flagged as being OOD) would be missed, as well
as six cores with glandular atypia. Four of the five missed
foci of adenocarcinoma were 1 mm or less in size, two of
which were also missed by manual reviewers. The missed
foci of adenocarcinoma in two of the five in-focus cores had
foamy gland features, a variant that often has deceptively
benign cytologic features. While these data raise the pos-
sibility that the algorithm may have some difficulty with
this morphologic variant, we were able to find at least one
other instance of carcinoma with foamy gland features that

Fig. 2 Micrographs of adenocarcinoma foci missed by Paige
Prostate. A Shows a focus of adenocarcinoma with foamy gland
features with the corresponding PIN-4 immunostain in B. A focus of

perineural adenocarcinoma is shown in C. D Shows a focus of
adenocarcinoma with androgen deprivation therapy effect. (Scale
bars= 100 μm).

Table 4 Results of manual review of “suspicious” discrepant cores
(n= 34).

Final diagnosis group Manual review
category

Total

Agree Overcall

Benign 0 15 15

Atypical 16 0 16

No prostatic glandular tissue 0 2 2

Granulomatous prostatitis 0 1 1
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was accurately flagged by Paige Prostate (Supplementary
Fig. 1). Four of the five missed malignant cores were from
patients who had other cores with larger volume or higher
grade disease that was correctly categorized by the algo-
rithm and the misses are unlikely to have had significant
clinical impact in these instances. The fifth missed core was
from a patient with prior documented low-grade, low-
volume disease undergoing routine surveillance and the
miss likely would not have changed clinical management.

It is also important to recognize that only one of three
levels from each prostate core needle biopsy was scanned
for this study. In practice, pathologists examine multiple
levels to increase the possibility of detecting a focus of
carcinoma or glandular atypia. It is possible that some
performance metrics of the algorithm, including its detec-
tion of carcinomatous or atypical foci, would be enhanced if
all individual core levels had been scanned and were sub-
jected to analysis. It is also possible that these additional
levels scanned might not suffer from the same scanning
artifacts that compromised the level scanned for algorithmic
analysis in this study.

The impact of missing 9 cores with adenocarcinoma that
had scan issues but were not flagged as being OOD highlights
the importance of additional stringent scan quality assurance
steps while using machine-learning diagnostic tools in ana-
tomic pathology. In this study, it would have meant that at
least two patients with carcinoma would have been rendered a
benign diagnosis. The impact of the missed glandular atypia/
ASAP cores is more difficult to characterize. This diagnostic
group includes cores with atypical glands where the focus of
concern does not meet morphologic threshold for an outright
diagnosis of carcinoma. The atypical glands may represent an
under-sampled tumor or benign mimics of malignancy such
as partial atrophy. ASAP is reported in ~3% of prostate core
biopsies and is associated with a higher risk of finding ade-
nocarcinoma on re-biopsy [14, 15]. While these lesions are
not actionable from the urologist’s standpoint, from the
pathologist’s perspective this can prompt review of additional
levels and immunohistochemical stains. This is best high-
lighted by the missed carcinoma “not-suspicious” discrepant
core #5 (above) in this study where both manual reviewers
diagnosed glandular atypia that was revealed to be a larger
focus of adenocarcinoma on levels. Overall, if we consider
cases without scan issues, Paige Prostate flagged at least one
core of a case as suspicious in patients with carcinoma
highlighting its potential as a screening tool, at least on a per
case basis.

If the algorithm had been used as a “second read” on
slides that were called benign by the pathologist to verify
that no carcinoma had been missed, only 34 slides (1.8% of
total) would be categorized as suspicious. The algorithm did
not identify any focus of adenocarcinoma missed by the
pathologist in this study set. However, the algorithm did

identify a number of very small “suspicious” foci. When the
reviewers were asked to manually re-review previously
reviewed images, but this time specifically knowing that the
algorithm had called them “suspicious”, and with the
algorithm highlighting the focus it called suspicious, in
about a half of these images at least one of the two
reviewers changed their diagnosis from benign to glandular
atypia. Given, as stated above, that lesions such as these can
prompt additional studies by the pathologist as they can be
associated with adenocarcinoma on re-biopsy, the use of
Paige Prostate to identify such lesions might prove a useful
adjunct to pathologists’ review. In this study, the “suspi-
cious discrepant” core biopsies came from 28 different
patients, 23 of whom had cancer in at least one other core of
the case; the prevalence of carcinoma in these patients was
82%. This prevalence rate is somewhat higher than the 73%
prevalence rate of cancer among all of the patients in the
study. These data suggest that Paige Prostate is finding even
very small foci of atypical glands. Finally, our study was
designed to assess the performance of Paige Prostate on a
cohort that is representative of our practice. However, the
possibility that our unbalanced cohort favors a diagnosis of
“not suspicious” and thus impacts the performance metrics
of the algorithm cannot be ruled out.

Paige Prostate has been shown to increase detection of
prostate cancer in whole-slide images when reviewed by non-
GU subspecialized pathologists [13]. In a highly sub-
specialized practice setting such as Yale Pathology, where
many prostate biopsies are reviewed by at least one GU
subspecialized pathologist, possibly more than once, the
benefit of Paige Prostate to improve on sensitivity of diag-
nosis may be limited; however, further studies are needed to
investigate whether Paige Prostate, or similar tools, can
improve the efficiency of slide review and how its use might
influence the utilization of ancillary studies (i.e., immuno-
histochemical stains, levels) and consensus review. Another
important factor which may have a bearing on these results is
that, since Yale is a tertiary referral center, the prevalence of
malignancy was quite high in this study set: 26% of the
biopsies and 73% of the patients. This is higher than the
prevalence rate in most community hospital settings.

The study also highlights areas for possible improvement
of the algorithm. For example, better identification of out-of-
focus scans would decrease the false negative rate. On the
other hand, ignoring images containing only a single focus
less than 0.25mm would decrease the false positive rate for
the algorithm. Building in functionality for Gleason grading
and automatically providing the pathologist with measure-
ment data to automate aspects of the College of American
Pathologists reporting protocols such as the total length of the
biopsy, the maximum length of the cancer, and the percentage
involvement are additional enhancements that would increase
the utility of the tool in practice. Overall, Paige Prostate shows
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potential to be a versatile tool with varied use-case applica-
tions in anatomic pathology practice settings.

Data availability

The datasets used and/or analyzed during the current study
are available from the corresponding author on reasonable
request.
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